Some cubic birth and death processes and their related orthogonal polynomials

نویسندگان

  • Jacek GILEWICZ
  • Andreas RUFFING
چکیده

The orthogonal polynomials with recurrence relation (λn + μn − z)Fn(z) = μn+1 Fn+1(z) + λn−1 Fn−1(z) with two kinds of cubic transition rates λn and μn, corresponding to indeterminate Stieltjes moment problems, are analyzed. We derive generating functions for these two classes of polynomials, which enable us to compute their Nevanlinna matrices. We discuss the asymptotics of the Nevanlinna matrices in the complex plane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the 2-orthogonal polynomials and the generalized birth and death processes

The birth and death processes are closely related to the orthogonal polynomials. The latter allows determining the stochastic matrix associated with these processes. Let us also note that these processes are stationary Markov processes whose state space is the nonnegative integers. Many authors treated the question of the existing relationship between the birth and death processes and the ortho...

متن کامل

Weighted Sums of Orthogonal Polynomials Related to Birth-Death Processes with Killing

We consider sequences of orthogonal polynomials arising in the analysis of birth-death processes with killing. Motivated by problems in this stochastic setting we discuss criteria for convergence of certain weighted sums of the polynomials. AMS Subject Classifications: 42C05, 60J80.

متن کامل

Analysis of Random Walks Using Orthogonal Polynomials

We discuss some aspects of discrete-time birth-death processes or random walks, highlighting the role played by orthogonal polynomials.

متن کامل

Associated polynomials and birth-death processes

We consider sequences of orthogonal polynomials with positive zeros, and pursue the question of how (partial) knowledge of the orthogonalizing measure for the associated polynomials can lead to information about the orthogonalizing measure for the original polynomials, with a view to applications in the setting of birth-death processes. In particular, we relate the supports of the two measures,...

متن کامل

Multivariate Krawtchouk Polynomials and Composition Birth and Death Processes

This paper defines the multivariate Krawtchouk polynomials, orthogonal on the multinomial distribution, and summarizes their properties as a review. The multivariate Krawtchouk polynomials are symmetric functions of orthogonal sets of functions defined on each of N multinomial trials. The dual multivariate Krawtchouk polynomials, which also have a polynomial structure, are seen to occur natural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005